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A complete description of the fluctuation operator algebra is given for a 
quantum crystal showing displacement structural phase transitions. In the one- 
phase region, the fluctuations are normal and its algebra is non-Abelian. In the 
two-phase region and on the critical line (To>0) the momentum fluctuation 
is normal, the displacement is critical, and the algebra is Abelian; at T,. =0 
(quantum phase transition) this algebra is non-Abelian with abnormal displace- 
ment and supernormal (squeezed) momentum fluctuation operators, both being 
dimension dependent. 
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(squeezed) fluctuations; quantum phase transition. 

1. I N T R O D U C T I O N  

In this pape r  we main ly  turn  our  a t t en t ion  to cri t ical  f luctuat ions,  i.e., to 
f luctuat ions  on  the cri t ical  line of  the phase  d iagram.  In  the physics of 
collective p h e n o m e n a  it belongs to the s t anda rd  wi sdom tha t  cri t ical  fluc- 
tua t ions  wash out  q u a n t u m  effects. The  intui t ive heurist ic  a rgumen t  for this 
is that  cri t ical  f luctuat ions  are manifes ta t ions  of  long-range  corre la t ions  
and  tha t  q u a n t u m  effects are h idden  by  the long- range  corre la t ions  in the 
cri t ical  region. The f luctuat ions  behave classical ly (see, e.g., ref. 1). 

However ,  f rom the exper imenta l  side there is a con t inuous  interest  in 
the de tec t ion  of  q u a n t u m  p h e n o m e n a  in cri t ical  regions where long-range  
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correlations show up. One observes great activity in the search for these 
effects in perovskite crystal structures like SrTiO3 and KTaO3. For  recent 
measurements indicating a novel quantum phase transition see, e.g., ref. 2. 
What seems to be clear is that there exists experimental evidence for 
the existence of typical quantum effects observed in critical fluctuations, 
challenging the above intuitive heuristic argument, which seems to be too 
crude to explain these experimental results. We argue this point with rigor 
on the basis of the study of a model. 

Recently (3-5) a theory was developed that is suitable to handle the 
joint description of two and more macroscopic equilibrium fluctuations. 
Another relevant point is that the notion of a fluctuation as an observable 
and operator was introduced. The work is done for genuine quantum 
systems. The main outcome is that the set of macroscopic fluctuations can 
be jointly described in a canonical way by a boson field. Due to the coarse 
graining of the central limit theorem, the fluctuations of two or more non- 
commuting local observables can commute or not. If they all commute, no 
quantum effects in this sense are observed--on the level of the fluctuations. 
They are described by a classical field and one speaks about classical 
fluctuations. In case the set of fluctuation observables is noncommutative, 
one speaks about quatum fluctuations. Clearly, in a classical system one 
never observes quantum fluctuations. 

Ellis and Newman (6) showed that classical Curie-Weiss models at the 
thermal critical point Tc have critical abnormal fluctuations if one takes 
simultaneously the infinite limit for the size of the system and for the 
number of random variables. 

Recently (7) this question has been studied for quantum mean-field 
models showing also critical behavior. It was observed that the critical 
fluctuations are purely classical in agreement with the widespread belief. 

Here we consider a model invented to study displacive structural 
phase transitions with general anharmonieity. (8'9) We consider a 
d-dimensional square lattice 7/a; at each lattice point l E 7/d we associate a 
quantum particle with mass m, position Q~e ~1, and momentum Pt. The 
local Hamiltonian H A for any finite subset A of 2 a is given by 

P~ 1 
Ha(h)= ~ ~m+-~ ~ O,_,,(Q,-Q,,) z 

l E A  I , I ' ~ A  

a 

+ ~  ~ Q ~ + I A I W  Q~ - h  ~ Q, 
l e a  1 l e a  

(1.1) 

The first two terms represent the Debye phonon approximation; the third 
term describes the stabilization of the lattice and creates a gap in the 
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phonon spectrum for a > 0 .  A typical example of the potential W is 
W(x) = (b /2 )exp( - r /x ) ;  b, q > 0  and b sufficiently large. (8) 

This model shows two types of phase transitions. On one hand, it 
has the usual mean-field phase transition controlled by the parameter 
temperature, which has been studied carefully before. (9,m) On the other 
hand, at T =  0, we exhibit a transition of a pure quantum nature controlled 
by the quantum parameter 2 = h/x/-m. 

In this model we compute the fluctuations in each of the critical points 
Tc and 2 c along the lines of ref. 11. Our calculations are guided by the ideas 
developed recently by one of us. (3-5) In order to make the idea clear 
without entering into the technical details, consider the square lattice 2U 
quantum system and Ai, Bj copies of local observable operators A and B 
at the sites i, j ~ Z  a. In refs. 3 and 4 it is proved that one can given a 
mathematical meaning to the limits 

1 
Fo(A)=lim--~i~A(Ai-(A)); AET/d, V=IA] (1.2) 

in the sense of a central limit theorem, i.e., with respect to a space transla- 
tion-invariant state ( - )  which might be a thermal state or a ground state. 

One proves that for any A the limit Fo(A) is an unbounded operator. 
It is called the fluctuation operator of A in the state ( - ) .  

One can compute the commutator  of two fluctuation operators in the 
follows sense: 

[Fo(A), Fo(R)] = liNm i A/-- (A),  ~ j  

= limv-~il ~A [Ai' Bi] (1.3) 

The right-hand side of this equality is a mean average, equal to a constant, 
of the expectation value ( [ A , B ] )  if ( - )  is an ergodic state. If 
~[A, B ] ) v a 0 ,  the commutator  (1.3) yields a nontrivial canonical com- 
mutation relation between two fluctuation operators: 

[-Fo(A), Fo(B)] = ([A, B] )1 (1.4) 

indicating the quantum character of these fluctuations. 
The normality of the fluctuation defined by (1.2) manifests itself in the 

factor V - m  in front of the sum. 
Our model results are about fluctuation operators for equilibrium and 

ground states at the critical points. The results include the following points. 
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(i) As in ref. 11, one finds at the critical points fluctuation operators 
F6 of the type (1.2), but carying a normalization V -m-~,  6 ~ (-1/2,  1/2), 
showing a deviation from the standard square root; the parameter c5 
(critical exponent) measures the degree of criticality of the corresponding 
fluctuation operator. 

(ii) In the ground state we exhibit a "pure quantum" transition and 
there exist a pair of local operators A and B in the model such that the 
fluctuation of A is of the type F6(A) with 6 > 0 and the fluctuation of B is 
of the type F6(B) .  Usually one calls fluctuations F6(A) with 6 > 0  
abnormal critical fluctuations. The new type F_6(B), c5 > 0, will be called 
supernormal (squeezed) critical fluctuations. 

(iii) Moreover, the critical fluctuation operators F6(A) and F 6(B) 
satisfy the following canonical commutation relation: 

[Fa(A), F_a(B)] = ([A, B])4 r  (1.5) 

generalizing (1.4), and what is even more interesting, putting forward 
unambiguously the quantum nature of critical fluctuations. 

(iv) The dimension dependence of the critical parameter 6 can be 
explicitly calculated. 

This paper is organized as follows. In Section 2, we give a complete 
description of the thermodynamics or the phase diagram of the model (1.1). 

In Section 3, we give more detailed information about the model by 
constructing explicitly its equilibrium and ground states. Much attention is 
given to the phenomenon of spontaneous symmetry breaking. This is 
necessary in order to understand the nature of the phase transitions 
present. 

The bulk of our contribution is given in Section 4, where we give com- 
plete results about the momentum and displacement fluctuation operators 
in all points of the phase diagram. We distinguish four regions. The first 
is the one-phase region (except the critical line), where all fluctuations are 
normal and the algebra of fluctuation operators is non-Abelian. 

In the two-phase region, the momentum fluctuation is normal, while 
the displacement fluctuation is abnormal critical with a critical exponent 
which depends explicitly on the boundary condition. The algebra of 
fluctuation operators is Abelian. 

The third region which we can consider is the critical line except the 
point Tc = 0. Here we prove rigorously that the momentum fluctuation is 
normal and the displacement fluctuation abnormal critical We find the 
exact values of the critical exponents, they do not depend on the boundary 
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conditions, but they depend on the dimensionality of the system. Here also 
the algebra of fluctuation operators is Abelian. 

Finally, at the critical point T~ = 0, we find a pure quantum transition 

at a critical value 2c of the quantum parameter 2 = h/x/-m. At this point we 
compute also the dimension-dependent critical exponents of momentum 
and displacement fluctuations. We prove that these fluctuation operators 
generate a non-Abelian algebra, putting in evidence the quantum character 
at criticality. The displacement fluctuation is abnormal critical, but the 
momentum fluctuation is squeezing. Also at this point, the critical 
exponents are independent of the boundary conditions. 

2. M O D E L  A N D  P H A S E  D I A G R A M  

First we introduce the model. Let J f  = L2(N~); 7/d is the d-dimensional 
square lattice with local structure; denote by ~ ( Z  a) the directed set of finite 
subsets of Z a, where the direction is the inclusion. With each A ~ ~ ( Z  a) we 
associate the local algebra Mr, l e A, of operators on ~r generated by the 
operators R(P)f(Q), where R runs through the polynomials and f is in 
C~; Q and P stand for the usual canonical observables of multiplication 
and differentiation (i.e., [Q, P]  = ih). 

For each A e~(Za), denote the tensor product NA= @I~AMt; the 
algebra of local observables is then the union ~ = (JA ~h" 

The model Hamiltonian for each A e~(Za) ,  with V= IAI the volume 
of A, is given by 

where IcE (1.1)] 

TA=2mz~AZ P, OZ +~ z.,,~ A 

Qt and PI are the displacement and momentum of a particle with mass m 
at the site l e7/a; the potential is supposed to be translation invariant 
(~btr = ~bt_r) and of finite range; the W term in (2.1) is meant to include the 
anharmonicity. To describe a displacive structural phase transition, we take 
a double-well potential form for the a term + W term: for example, a > 0 
and the function W(x)=(b/2)exp(-~lx) with b, q > 0  and b sufficiently 
large to destabilize the a term. (8'9) Another example is a < 0  (one-site 
instability) and W(x)= �89 2, b > 0. (1~ Hence, now the W term stabilizes 
the lattice. This polynomial choice of anharmonicity is known as the 
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~04-model for structural phase transitions. The particular choice of the 
function W will be unimportant for the considerations below if W satisfies 

1 (9) some general condit'ons. The substitution of Q2 by the arithmetic mean 
over A is an ansatz corresponding to the concept of the self-consistent- 
phonons (see, e.g., ref. 12). 

The model (2.1) is soluble in the sense that for all temperatures T > 0 ,  
the free energy density and the thermal averages can be calculated explicitly 
(see Appendix). Take the hypercubic subset A c 7/a wrapped according to 
the periodic boundary conditions: 

7/d N~ N:~ } A =  le  -- -~- < l~ ~< ~ - ;  ~ = 1,..., d 

Then V d = H a =  1 N~ and the dual volume A* is given by 

A * =  q - -n~ 'n~=O'+ l ' " "+N~ ' _ _ - 1  , ~ - ; c ~ = l , . . . , d  

The free energy density for this model is given by 

h + ~ ln [2sh  + W(CA)---CAWt(CA)} f (T ,  =O)=liam {p q~A* fl)'~'~q(CA)] (2.3) 

where CA is a solution for c of the self-consistency equation 

/ H A ( C , h = O ) = - V q ~ e A . - - c o t h ~  (2.4) 

see Appendix, Eq. (A15). 
Here fi = 1/kT and 

h 
2 = x / -  ~ (2.5) 

2 _ 2 d(c) (2.6) ~ q(C) -- (.O q ~- 

A(c) = a + 2 W'(c) (2.7) 

eOq 2 = ~ ( 0 ) -  ~(q) (2.8) 

is the Fourier transform of ~b on the lattice 7/a. The stability condition of 
the model is expressed by 02q(C)>~ 0 for all c ~> 0 or equivalently (9) by 

a+2W'(c)>~O for all c>~0 (2.9) 
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Clearly CA iS an order parameter measuring the mean square of the particle 
displacements from their equilibrium positions [see (A.15)]; A(c) is a gap 
in the spectrum (2.6) of collective excitations, the phonons. 

The study of the phase diagram of the model amounts to the study of 
the solutions of Eq. (2.4) in the thermodynamic limit A ~ Z J, Equation 
(2.4) reads then 

where 

c= p + Ia(c, T, )o) (2.10) 

p = l i m  - -  coth [A(c)] '~/2 (2.11) 
A V2[A(c)]  1/2 

~ I ~  coth(/~2/2) f2q(C) (2.12) 
la(c, T, 2)=  ~ daq 2f2q(C) 

Here ~3~= {q E IRa: iq~l ~< n} is the first Brillouin zone. For fixed T>  0 and 
2, the integral (2.12) is finite if d~> 3 and e satisfies the stability condition 
(2.9). For T = 0  and fixed ), the integral (2.12) is finite if d>~2. 

Let us introduce the domain D of c satisfying the stability condition 
(2.9). Define c* as follows: 

c* = inf{c I c >~ 0; A(c) >~ 0} (2.13) 

Then for a particular choice of anharmonicity, as W ( x ) = b / 2 e x p ( - t l x ) ,  
one gets c* =max{0,  q-1 In btl/a}. 

Because W ' < 0 ,  the infimum is attained at c* such that 3 (c*)=0 .  
Hence the domain for the order parameter c=c(T,  2) as a solution of 
(2.10) is the interval D =  [c*, or). 

Remark also that the value of c* depends on the form of the harmonic 
and anharmonic parts of the one-particle potential; hence, changing the 
characteristics of the potential changes the value of c* for the domain D. 
Also, fixing the shape of the potential fixes c* or the stability domain D 
for c. In fact, the requirement of the double-well form of the potential 
means already that c*>  0. 

Proposition 2.1. (i) The equation 

c* = &(c* ,  T, ;~) 

for fixed c* defines a unique curve 2c(T) expressed as a function of T, or 
To(2) expressed as a function of 2. 

This curve separates the (T, 2) plane into two parts indicated by phase 
(I) and phase (II); see Fig. 1. 

822/69/1-2-22 
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Xo(0) (1) 

p(T,X)=0 

"I i \ 
p(T,k)>0 

T To 

Fig. 1. Phase diagram of the model (2.1). 

(ii) Let p(T,  ) .)=max{0, c*--Id(C*,  T, )~)}; then 

p(T, 2) = 0  if (T, 2) E (I) w 0(I) 

> 0  if (T,)0 e (II) 

In other words, in the phase region (I) one has a solution of (2.10) with 
p = 0 and in phase region (II) one has p > 0. 

ProoL (i) From the explicit form of the integral la in (2.12) one gets 
a solution 2c(0 ) < oo of the equation 

Id(c*, 0, ,~c(0)) = c* 

and also a solution To(O) < ~ from the equation 

Id(c*, TA0), 0) = c* 

Computing the first and second derivatives of T ~ I d ( c * ,  T, 2c(T)) yields 
that T ~  2c(T) is concave, as indicated in Fig. 1, separating the (T, 2) plane 
into the regions (I) and (II). 

(ii) Remark that the function Ia(c*, T, 2) is monotonically increasing 
independently in the variables T and 2. Therefore 

Ia (c* ,T ,  2 ) > c *  iff (T, 2) ~ (I) 

Id(c*, T, 2 ) < c *  iff (T, 2 )e ( I I )  

Id(c*, T, 2) = c* iff 2 = 2c(T) 

Remark that the function c --* c - Id(c, T, )~) is monotonically increas- 
ing and 

min(c - Id(c, T, 2)) = c* - Ia(c*, T, 2) 
r  
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Therefore 

is given by 

p(T, 2) = max{0, c* - Id(e*, T, 2)} 

p(T, 2) = 0 if (T, 2 ) ~ ( I ) w S ( I )  

p(T, 2) > 0 if (T, 2) ~ (II) 

Furthermore, remark that c ---, ~ Id(c, T, 2) is monotonically decreas- 
ing (see Fig. 2). Therefore Eq. (2.10) always has a solution for c(T, 2), with 
p = 0  i f (T ,  2 ) a ( I ) w S ( I )  and p > 0 i f ( T ,  2)a(II) .  | 

Coming back to Fig. 1, and looking along a vertical (T-- const) dotted 
line in the figure, if 2 < 2c(T), then p > 0. Increasing 2 across the critical 
line 2c(T), we have a phase transition going from a regime p > 0  to 
a regime p =0.  We observe a phase transition driven by the quantum 
parameter 2 of (2.5) for each temperature T <  To(0). 

As remarked above, changing the shape of the double-well potential 
changes the value of c*>  0. One obtains the same type of phase diagram 
Jn the variables (c*, T) as in the variables (2, T). 

The other, well-known, phase transition in this model which is driven 
by the temperature is observed in the phase diagram of Fig. 1 by looking 
along a horizontal (2 = const) dotted line. If 2 < 2c(0 ), one is in the regime 
p > 0 for low temperatures T, and with increasing T one crosses the phase 
line 2c(T) before entering the phase p = 0. Note that if one fixed 2 > 2c(0), 
then upon decreasing the temperature, one will never cross the critical line, 
which means that for large values of the quantum parameter 2, the 
temperature-driven phase transition is suppressed by quantum tunneling or 
quantum fluctuations. Note also that the classical limit of the model is 
obtained in the limit 2 ~ 0, such that T~(0) is the critical temperature of the 
classical model. 

o" ~z,(a)A) 

c" c(T,X) c 
Fig. 2. Graphical solution of the equation (2.10) 
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3. G R O U N D  STATE,  E Q U I L I B R I U M  S T A T E S  

In Section 2 we introduced the model and the algebra of local observ- 
ables of the system: ~r = UA NA, where ~A is generated by the algebra of 
Q~ and Pz, l e  A, the canonical position and momentum operators. 

In general a state of our system is any positive, linear, normalized 
form 09 on d .  

For  any a ~ 2U, denote by Za the lattice translation , -au tomorphism 
defined on d by 

"caQt=Q~+a, "caPt=Pt+~ 

A state co is called lattice translation invariant if co.za = co for all a c Za; 
co is called ergodic or extremal translation invariant if furthermore 

lira co(A'CaB)=co(A ) co(B) 

for all A, B ~ d .  
We are interested in the ergodic equilibrium and ground states of the 

system determined by the model Hamiltonian (2.1), to which we add an 
external field term [cf. (1.1)]: 

HA(h)=TA+VW( 1-- ~ Q~) -h  ~ Qt (3.1) 
kVteA l e a  

The external field h plays the role of a boundary condition. Finally, we will 
be interested in the states obtained in the limit h--, 0 in a specific way, in 
order to eliminate all degeneracies. 

For  the purpose of this paper it is useful to characterize equilibrium 
and ground states by means of correlation inequalities./~3) 

For  T > O  (/~< Go), a state co is an equilibrium state if for all A ~ d  
one has 

co(A'A) 
~co(A * fh(A ) ) >~ co(A'A) In - -  (3.2) 

co( AA * ) 

and for T =  0, co is a ground state if for all A ~ d one has 

co(A*fh(A)) >1 0 (3.3) 

where the derivation bh is weakly defined by: A, B ~ ~r then 

co(A6h(B)) = lim co(A [HA(h ), B] ) (3.4) 
A 

In writing these equilibrium conditions, we implicitly assume that we 
are looking at those solutions co for which these limits exist. 
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Before going on, already at this point we want to indicate that the 
characterizations (3.2) and (3.3) make it clear that the equilibrium and 
ground states are essentially determined by the derivation c~ h of (3.4), i.e., 
by the commutator  with the Hamiltonian. 

Furthermore, the Hamiltonian (3.1) is lattice translation invariant. 
Therefore we will only look for solutions co of (3.2) and (3.3) which are 
translation invariant. In other words, we assume that there is no 
spontaneous breaking of this translation symmetry. While we are unable to 
show this property, we strongly believe that this is not really a condition. 
Translation-invariant states have the property that they can be decom- 
posed into ergodic states. This means that there exists a probability 
measure, denoted by v, with support on the set do of ergodic states such 
that (ref. 14, Chapter 4) 

co(.) =f~ dv(~) ~(.) 

By this formula and because of the convexity of both sides of (3.2) and 
(3.3), it is sufficient to consider the solutions q e g of the inequalities 

~l(A*A) fltl(A*~h(A)) >1 tl(A*A ) In - -  (3.5) q(AA*) 
rl(A*6h(A)) >i 0 (3.6) 

The main property of these ergodic states r /~d o is the existence of the 
ergodic means; for all local operators A, B, C e  d one has 

lim q ( A ( lx~A "C xB) C) = tl( A C) q( B 

i.e., 

t/-weak-lim 1 E r x B =  t/(B) 
A g x ~  A 

In particular, take B = Q~; then 

r/-weak-lim 1 ~ 2 2 Q~ = q(Qo) 
IEA 

(3.7) 

We use this property in order to prove that, if one is interested only 
in the ergodic solutions, one can work with an equivalent system, defined 
by an effective Hamiltonian H~(h) given by the following result. 
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Proposi t ion  3.1. For all A, B e d ,  we have 

~I(A6~(B)) = lim */(A [H~(h), B] ) 
A 

where 

and 

p2 1 
H~(h)= 2 ~m+'~,,~A ~b'-v(e'--Qr) 2 

l E A  

a 

+ W'(c) E Q~ +~ E 02-h E Q, 
l E A  I ~ A  I ~ A  

(3.8) 

ProoL Comparing the original Hamiltonian (3.1) and the effective 
one (3.8), we may concentrate our attention on the W term in the 
Hamiltonian. Consider then the function W as given by its series expansion 
and treat it term by term. The proposition follows from the formula 

v L E  n 

= . 1  1 Q Q~,A Q 
k ~ O  l l l 

for all A e d ,  and from the property (3.7). Indeed, 

r/-weak-liAm I V ( 1  ~ A Q~)",A; 

=  (Qg)k Q ,A  (Qg) -kl 
k = 0  

By this proposition the derivation 6~ can be weakly approximated by 
the commutator with the effective Hamiltonian H~(h) of (3.8), which is at 
most quadratic in the observables Q and P. Hence its equilibrium and 
ground states, solutions of (3.5) and (3.6), can be calculated explicitly. The 
ergodic equilibrium states t/are convex combinations of so-called quasifree 
of generalized free states (ref. 14, Sections 5.2 and 5.3) of the algebra of 
observables s~ generated by the canonical operators Qt and Pv, l, l ' e  7/d. 
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Generalized free states have the interesting property that they are 
completely characterized by the one- and two-point functions: q(Qr r/(Pz), 
q(QtQr), q(P,P~,), and ~(QtPr), l, l' e 7/d. 

In our model, because of time-reversal symmetry invariance, we have 
already q (P t )=0  and ~/(Q~Pr)=0. Therefore, in order to characterize 
completely the solutions of (3.5) and (3.6), we have to compute only q(Qz), 
q(Q,Q,,), and rl(P~P,,). 

In fact, in order to characterize completely the state t/, it remains to 
compute q(Ql). 

If the external field h = 0, then the model HA'(0 ) [as well as (3.1)] has 
the 7/2 symmetry, i.e., the local Hamiltonians are invariant under the 
substitution Qt--* -Q~. 

The model has been primarily invented to describe the phenomenon of 
the spontaneous breaking of this symmetry and the softening of the phonon 
mode g2q=O; see (2.6). In the following we give a rigorous proof of this 
phenomenon. We follow the usual method, namely we consider the case 
h # 0 and discuss the limit h-* 0. 

So let h-r 0, and compute again, in terms of the dual lattice A*, the 
self-consistency equation (3.9); the order parameter c of (3.9) now depends 
on the external field and is denoted now by ch [cf. (2.10) and (A.15)]; then 

h 2 1 2 
Ch = d2(Ch) + liana V [d(Ch) ] 1/2 coth [A(G)] 1/2 + Ia(G, T, 2) (3.10) 

where, as above, A ( c ) = a + 2 W ' ( c ) ;  eED [see (2.7)]. 
If h #0 ,  because A(c*)=0,  the h 2 term in (3.10) has a singularity at 

c* and Eq. (3.10) always has a solution Ch > C*, i.e., A(ch)>0; therefore, 
the second term in the right-hand side of (3.10) vanishes in the limit 
A --* oo. We get Ch, A --* Ch and the equation 

h 2 
ch = A2(G ) + Id(G, T, 2) (3.11) 

Now we compute the expectation value of the average displacement 
operator 

q(Qo) = lim h -V tl Q ' = A ( G-----~) 
l ~ A  

(3.12) 

which is uniquely defined and different from zero, at least if h r 0. We have 
to consider two cases corresponding to the two phase regions (I) and (II) 
of Proposition 2.1 (see Fig. 1): 
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Phase(I). In this case c* <Id(c*, T, 2) (see Fig. 2) and (3.11) has a 
solution ch such that 

lira ch=c(T, 2)~>c* 
h ~ O  

Therefore, from (3.12) 

lira ~/(Q0) = 0 
h ~ O  

Phase (ll). In this case c* > Ia(c*, T, 2) (see Fig. 2). As in the proof 
of Proposition 2.l, using that c--, c - Ia(c ,  T, 2) is monotonically increas- 
ing, (3.11) becomes in the limit h ~ 0  

h 2 
p(T, 2)=c*- - Id (C*,  T, 2 ) =  lim ,~----75,~ > 0 

~ o  3(Oh)- 

Therefore, together with (3.12) one obtains 

or 

t/• = lira r/(Q0)= +[p(T, 2)] '/2 (3.13) 
h ~  •  

q+(Qo) = -r l - (Qo)= [p(T, 2)] ~/2 

Clearly, this formulas hold in both regions now, but r /+ (Qo) r  in the 
phase region (II), i.e., in the limit h--, 0, there exist two different solutions 
r/+ and q_ of both Eqs. (3.5) and (3.6) for T <  Tc(2). Both solutions are 
not Z2-symmetric, i.e., we have proved the spontaneous breaking of this 
symmetry. As expected, the average displacement value (3.13) is a non- 
trivial order parameter. Using the results of Proposition 2.1, one gets 
immediately the curves in Fig. 3 for the order parameter as a function of 
the temperature. 

We collect all this in the following result. 

O- 

~.(Q~ 

~ ( q ~  

Fig. 3. Soft mode spontaneous breaking of the ZZ-symmetry in the region (II) of the phase 
diagram (Fig. 1 ). 



Algebra of Fluctuation Operators 343 

Propos i t ion  3.2. The model (2.1) shows a phase separation line 
lc(T) or To(2) (Proposition2.1) showing spontaneous Z2-symmetry 
breaking in the phase region (II). There exist two extremal equilibrium 
(or ground states) r/+ and r/ on ~r such that 

~+(Qo)=-q_(Qo)=[p(T, 2)]l/2~o, (T, 2) ~ (II) | 

4. F L U C T U A T I O N  O P E R A T O R S  

In this section our calculations are guided by the ideas recently 
developed in ref. 11, which create the possibility of making a clear distinc- 
tion between classical fluctuations and fluctuations of a pure quantum 
nature. Although not e::plicitly stated, an embryonic form of these ideas is 
already inherent in the work of Hepp and Lieb I15~ on laser theory. 

The theory has already served 116/ to give the microscopic explanation 
of the self-consistent phonon theory in solid state physics, yielding a full 
particle description of phonons. 

Here we use from ref. 3 essentially two things: first, the notion of a 
fluctuation as an operator and second, the frame in which it is possible to 
give the joint description of two and more fluctuations, giving a meaning 
to the algebra of fluctuations. 

Without going into the details, let us introduce the notions and the 
essentials of this theory. 

Consider A i a copy of a local operator A at the lattice site ie  7/d. In 
refs. 3 and 4 it is proved that one can give a meaning to these limits 

I 
Fo(A) = liAm ~,~i~A [Ai-q(A)] (4.1) 

as unbounded operators on some Hilbert space, for every ergodic state t/ 
on the algebra so', which is enough clustering. The limit is in the sense of 
the usual central limit theorem in probability, but now with respect to the 
state r/. The operator Fo(A) is called, in a natural way, the fluctuation 
operator of A in the state r/. Technically, the existence of the fluctuation 
operator is guaranteed if one proves that the variance of the fluctuation is 
not trivial, in particular one has to prove 

0 <l im r/ ~ [ A i -  t/(A)] <oo (4.2) 
i ~ A  

Consider now the following commutator: take two local operators 
A,B~d, 

[--~i~A 1 [Ai-tl(A)]'-~j~A [Bj-~l(B)]d=li~A ~ [Ai'Bi] (4.3) 
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where we used the local commutativity 

[A,, Bj] = 6ij[A,, B,] 

Take the r A ~ 7/d of (4.3) in the state t/; then one gets 

[F0(A), F0(B)] = l im 1- Z [Ai, B~] 
A V .  

t E A  

= t/([A,B]) (4.4) 

The second equality is due to the ergodicity of the state t 1. 
Equation (4.4) is a nontrivial canonical commutation relation between 

the fluctuation operators Fo(A) and Fo(B) if the c-number q([A, B ] ) #  0. It 
indicates the quantum character of the fluctuations. In fact ref. 3 proves that 
Fo(A) and Fo(B ) are boson fields. 

The normality of the fluctuation defined by (4.1) is manifested by the 
factor l/x/-# in front of the sum. 

In this paper we generalize the central limit result (4.1) in two 
directions: 

(a) We consider fluctuation operators F6(A) of the type (4.1), but 
which carry a normalization factor V 1/2-6 with 5 �9 ( -  1/2, 1/2); the criti- 
cal exponent 6 measures the deviation from the standard square root; it 
measures the degree of criticality of the corresponding fluctuation operator. 
Comparing with (4.2), we have now to check the 6 e ( - 1/2, 1/2) for which 
the following variance is nontrivial: 

0 < l im tl ~ [A~-  tl(A)] <oo (4.5) 
./1 i c A 

Following the general results of refs. 3 and 4, if (4.5) holds, it defines 
the fluctuation operator 

1 
F6(A) -- liana ~ ~, [A~- q(A )1 (4.6) 

i e A  

If 5 > 0, then F6(A ) is called an abnormal critical fluctuation; if 5 < 0 it is 
called a supernormal (sqeezed) critical fluctuation. 

Again one can consider the commutator of two fluctuation operators 
[compare with (4.3) and (4.4)1 

1 
[F6(A), F6.(B)] =lira V,+6+6-- ~ [Ai, Bi] 

A 
i E A  

t/([A, B]) if 6 + 5 ' = 0  

= 0 if 6 + 6 ' > 0  

undefined if 5 + 6' < 0 

(4.7) 
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This is again a way for distinguishing between the classical and quantum 
character of the fluctuations. 

(b) Motivated by the work of Ellis and Newman, (6) we also consider 
fluctuation operators F~(A) of the type (4.6), but where the central limit is 
taken in a very specific way. One takes simultaneously the limit for the size 
of the system together with the number of random variables. To be precise, 
let {/IA }A be a sequence of finite-volume Gibbs states, such that lim A /~A = 
is an ergodic limit state, then check the 6 e ( - 1 / 2 ,  1/2) for which the 
following variance is nontrivial: 

0 < lim qA ~ [Ai -qA(A)]  <oo (4.8) 
A i ~ A  

Again following the general theory, (3'4) this yields the fluctuation 
operator 

1 
F~(A)=liAm V~---772~ 2 [A,--tIA(A)] (4.9) 

i ~ A  

Remark that defining the limits in the sense of (4.5) or of (4.8) does 
not make any difference in the search for the classical or quantum nature 
of the fluctuations, because in the commutator the scalar term drops out 
immediately. 

In our model we consider the fundamental observables of momentum 
and displacement, in particular 

1 
Fa(Q) = lim ~ ~ [ Q , -  ~/A(Q,)] (4.10) 

l e a  

1 
Fa,(P ) = lima V 1/2 + ~ ~ [P' -- r/A(P')] (4.1 1 ) 

l e a  

We have to find 6 and 6' such that the variances in the sense of (4.8) are 
nontrivial. We take for {tlA}A any sequence of the Gibbs states determined 
by the effective Hamiltonian (3.8) with 

[-compare to (3.9)], and such that the r/A tend to the unique solution q for 
(T, 2) in the phase region (I); for (T, 2) in the phase region (II), the t/A 
tend to the extremal states t/+ or q_ ; see Proposition 3.3. Then we have 
the following result. 
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P r o p o s i t i o n  4.1. If (T, 2) belongs to the region (I), then 6 = 6 ' =  0, 
i.e., the fluctuation operators Fo(Q) and Fo(P) are normal. Furthermore, 

h 
[F0(P), Fo(Q)] = _  

l 

The Algebra of fluctuations is of quantum nature. 

Proof. Straightforward computation yields 

qA Vl/Z+~ ~ [Q~-qA(Qt)] = vza [A(cA)]I/2 
l e a  

B2 
coth 2 [A(CA)] 1/2 

(4.12) 
and 

( (  1 )2) 1 2m 
~A Vm+~, ~ Pt - V  2~' 2 [A(CA)Jmc~ [A(CA)]I/2 (4.13) 

l ~ A  

From Section 3, proof of Proposition 3.1, we get that lima cA = c > c*; 
hence there is a finite gap A(c)> 0; therefore, the limits A--, oe of (4.12) 
and (4.13) are nontrivial if and only if 6 = 6' = 0. The commutation relation 
is as in (4.4) or (4.7). | 

P r o p o s i t i o n  4.2. If 0 < T <  To(2) [region (II)],  then the momen- 
tum fluctuation operator Fo(P) is normal; the displacement fluctuation 
operator is of the type F~(Q) with 0 < 6 ~< 1/2, where 6 depends on the 
boundary condition (see below). The fluctuation algebra is Abelian. 

Proof. As indicated in Proposition 3.3, we take first A --, Z d and then 
h ~ 0. If h --, 0, then the solution c(h) of the self-consistency equation (2.11) 
tends to c* and A(ch)-*A(c*)=0. 

The normality of the momentum fluctuation operator follows 
immediately from the expression (4.13), i.e., 6 ' = 0 .  The displacement 
operator is somewhat more delicate. We start from the situation h e 0 .  
Consider the formula (3.12): 

h 
r/(Qo) = ~(eh) 

i.e., both fluctuation operators are normal (6 = 6 ' = 0 )  for h r  From 
(3.13), A ( c h ) -  Ih[ [p(T, 2)] 1/2 for small h. Clearly, from (4.12) we do not 
have any nontrivial variance for Q in the limit h-~ 0 (after A ~ Z d for 
6 =0) .  We have to take special boundary conditions. (iv'is) We take 

h = - -  (4.14) 
V ~ 
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with h fixed and ~ > 0, i.e., we couple lim h ~ 0 to lim A ---, Z a. We consider 
three regimes: 

(a) 0 <  e < 1. Considering the self-consistency equation (3.10) and 
lim A--* Z a, we see that the zero-mode term does not contribute and we 
obtain 

0 < p ( T ,  2 ) =  lim = c * - - I d ( c * ,  T, 2 ) <  oo 
~ V~A(Ch, A) 

Hence 

lim r/(Qo ) = lim 
A V~J(Ch, A) 

- (sign ]~)[p(T, 2)] ~,,'2 

Therefore formula (4.12) becomes 

({ 1 = lim 1 0 < lim r/A ~ ~ [ Q I -  r/A(Qt)] V2,~_~ 
A V l e a  

[p(T, ,~)] ~/2 
< 0 0  

(4.15) 

implying 26 = ~  or 0 < 6  < 1/2, depending on the boundary condition 
(4.14). 

(b) cr 1. Then in formula (3.10), the h term as well as the zero- 
mode term contribute and one gets 

o<p(r, { 1 
(A(ch, A) V) 2 +)~(~(ch,~) V)J 

= c * - -  Ia(c*, T, 2 ) <  oe 

Therefore 

0 < x - l i m  A(Ch, A) V <  oe 
A 

Hence 

P(T, 2) = ~-5 + ~-~ 

and 

lim t / (Qo)=l im < [p(T, 30] 1/2 
A A A(ch,A)V x 
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o r  

(Qo) < lim ~(Qo) < q + (Qo) 
A 

i.e., t/is a convex combination of ~/+ and t / -  

q=Rq+ + ( 1 - 2 ) q _  (4.16) 

and for p =p(T ,  2) one gets 

X 

o r  

Furthermore, x can also be computed from the equation for p = p(T, 2): 

1 1 ~2,~ 1/2 
> 0  

Remark that the standard quasiaverage approach, h ~ -t-0 after A--* 7/a 
(see, e.g., refs. 17 and 18), corresponds to/~ ~ _+oe in (4.16). In any event, 
the computation of fluctuations in a mixed state is not so relevant. By 
(4.15) it yields always 6 = 1/2, i.e., abnormal fluctuations corresponding to 
the mixed phases. 

(c) e >  1. Considering again (3.10), the external field term is small 
with respect to the zero-mode term and one has 

1 
0 < p(T, 2) = l im = c * - I a ( c * ,  T, 2 ) <  oe 

A ~3(Ch, A) V 

Hence for large A, A(ch) ~-- V -1, yielding 

lira r/(Qo) = lim - 0 
A A A(Ch, A) V ~ 

and 6 = 1/2 [see (4.12)] together with 

Formally this result corresponds to /~ $ 0 in (4.16). Again the limit state is 
not extremal. Finally, as far as the boundary condition (4.14) is concerned, 
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only the case (a), 0 < ~ <  1, yields an extremal state with fluctuation 
operators as indicated in the proposition, i.e., 6 = ~/2, 6 ' =  0. Following 
(4.7), the fluctuation algebra is Abelian. II 

Remark that we have considered a very special boundary condition 
(4.14); one can of course argue using other types of boundary conditions. 
Here we only wanted to stress the sensitivity of the fluctuations to the 
boundary conditions. 

Now we proceed with our results for (T, 2) on the critical line, i.e., 
(T, 2) satisfies the equation c* = Ia(c*, T, 2). 

Proposition 4.3. If (T, 2) belongs to the critical line (T, 2c(T)) 
or (Tc(2),2) (see Fig. 1), but T > 0  or Tc(;t)>0, then the momentum 
fluctuation operator Fo(P) is normal, the displacement fluctuation operator 
F~(Q) is abnormal critical with a critical exponent 6 which is dimension 
dependent: 

f l  if f = 3  
6a= 31+0 if d = 4  

if d~>5 

The algebra of fluctuation operators is Abelian. 

Proof. We must carefully study how the self-consistency equation 
(3.10) tends to the critical line c* =Ia(c*, To(2), 2) if T~(2)> 0. From this 
we must find out how the energy gap A(cA) behaves as a function of the 
volume. Clearly, if A tends to infinity, 

lim 1 2 flo(2)2 
V 2 [A(eA) ] m coth - - - T -  [A(cA)]I/2 = 0 

o r  

1 
lim - -  = 0 
A VA(cA) 

We choose a behavior A(CA) ~-- O(V -~) with 7 < 1 and try to find explicitly 
this parameter 7. 

Write formula (3.10) in the form 

cA - c *  + {c* - Id(CA, Tc(,~), ,~)} 

+ {Ia(c A, Tc(2 ), '~ ) - lq~o-~q  C~ ~ 

1 ,~ fl~(,~),~ 
- V2[d (ea ) ]m  coth - - T -  [A(c~)]m (4.17) 
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where I d is the integral (2.12). First we look at the second term in curly 
brackets in formula (4.17). Using 

~(0) - ~(q) = s2q 2 + O(q2); 

for small q and 

s>O 

A ~ 1 1 
2s c~  ~(~q ~ ~ q  ~ ~ q 2  

yields directly, using formula (A.7) of ref. 19, 

Ia(CA, To, c ) - -"Vq~o ~ q  coth 

uniformly in c A s D(c*) ,  where 

1 I ddk 2r coth f12 Oq Ia(c, T, 2) = ~ *~ 20q 2 

Therefore 

c* -- Id(CA) = Id(c*) -- Id(CA) 

= Ia(< ~'(C *) -- I (< ~)(C~) + I(a > ~)(C*) -- I(a>~)(CA) 

A(cA) f 1 
-- ~ "Jlql <e ddq s2q:(A(C A) + s2q :) 

+ (CA -- C*) 0cI(>~)(CA) 

Remark also that A(C A) = (CA -- C* ) 2W"(c*) + O(C A -- C*), or 

3(cA) 
2W"(c*) 

(c ~ - c*)  + O(CA -- c*)  

Hence 

c* - Z ~ ( c ~ , T c ( 2 ) , 2 )  

1 
_ A(CA) f da q s 2 q 2 ( A ( c a ) + s 2 q  2) flc(2)(2r~) a lql<~ 

3(c~) 

(4.18) 

+ - -  OcC>~ + o ( c ~  - e*)  2w"(c*) 
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A straightforward computation yields 

4~ se 
I~ <~(c*) - I~ <~)( c A ) - /~(2)(2z)3s  3 [ A ( C A) ] ~/2 arctg [ A ( C A) ] 1/2 

11 < ~)(c* ) - I(4 < ~)(CA ) 
K s2~ 2 + A(cA) 

flc(2)s 4 A(CA) In A(CA) 

where K is a constant; for d~> 5 we can work with the formula 

Ia(c*) -- Ia(CA) = (CA -- C* ) ~cld(c'A) 

Now we are in a position to rewrite Eq. (4.17), using all these results. If 
d =  3, then (4.17) becomes, in the limit A--* 2 3, as A(CA)~ O, 

/](CA) 4g [A(cA)]l/Zarctg Se 
2 W"(c*) +/~(2)(27r)3s 3 [A(CA)] 1/2 

A(CA) ~c/(>~)(C~l) -1-- 0(V-(3-2)/3)} V~c(t~)z~(cA) 
+ 2W"(c*) 

=1  

The only solution of this equation is 

A(CA) ~ V -2/3 (4.19) 

and only the second and the fourth terms within the brackets contribute. 
If d = 4 ,  then (4.17) becomes 

A(CA) K s2e2+A(cA) 
~ i + ~  A(cA)ln A(CA) 

A(CA ) OcI(d>~)(C,A)+O(V_(4 2)/4)} Vflc(,~)A(CA) = 1 
-~ 2 W"(c* 

The only solution for A(cA) is 

1 
~](CA)- V 1/2 In V (4.20) 

again this behavior is determined by the second and the fourth terms. If 
d =  5, then 

{ A(eA) /](cA) 2W-----~*) + 2W"(c*)0cla(e'A)+O(V-(5 2)/5)} V~c(2) A(CA)=I 

822/69/1-2-23 
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The only solution is 

Z~(CA) ~ V 1 / 2  (4.21) 

This behavior is determined by the first and second terms in the brackets, 
and clearly this result holds also for all dimensions d >/5. 

Now we turn to the computation of the fluctuations. We have to 
search for the value 6 in order that the conditions (4.8) are satisfied. Using 
again formula (4.12), we get for the displacement variable at the critical 
line with To(2) > 0 

~ [Q,_t/A(Qt)] =liAn a 1 Tc(2) 0 < l i m q  A 1 V 2~ zl(cA~) < oo 
\ t .  - -  l~A 

Using (4.19)-(4.21), one finds immediately that 6 is dimension dependent 
and given by 

t �89 for d = 3  

ha= 1+0  for d = 4  

{,�88 for d~>5 

For the momentum fluctuation, from (4.13) one gets immediately that the 
critical exponent 6 '=  0 independent of the dimension. 

That the algebra of fluctuation operators is Abelian follows from these 
results and from formula (4.7). 

This proves the proposition. | 

The Abelian or classical character of the fluctuation operators at 
criticality proved in the previous proposition is a rigorous result in com- 
plete correspondence with the standard wisdom that the quantum nature of 
the phase transition is suppressed at criticality. Finally, there is one more 
point to study in the phase diagram. This gives the following result. 

Proposition 4.4. If (T, 2) is the point [Tc(2)=0, 2c(0)], (i.e., at 
the pure quantum transition; see Fig. 1), then the displacement fluctuation 
operator F6(Q) is abnormal critical with a dimension-dependent critical 
exponent: 

{ !  f~ d = 2  

6d = ~+0 for d = 3  

for d~>4 

Furthermore, the momentum fluctuation operator F6,(P) is supernormal 
(squeezed) critical with critical exponent 6 '=  --6d, where 6d is an above. 
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It follows immediately that the algebra of fluctuation operators is 
non-Abelian, reflecting the quantum character of the phase transition; in 
particular, 

[Fad(Q), r_~a(P)]  = ih~ 

Proof. Here again we are at criticality and the gap A(CA)~O 
if A--*Za. We proceed in exactly the same way as in the proof of 
Proposition 4.3. However, the Equation (3.10) reads 

2 1 s 
cA = 2 V[zl(c A )] 1/2 -~ -V q~O 2~'2 q(C A ) 

with 12q(C)~- [A(c )+  s2q 2] l/2 for small q. Recall also that 

Id(c*, 0, 2c) < Go for all d >  1 

Again we use the approximation of the integral Id by sums over the duals 
of the finite volumes, i.e., we use again formula (A.7) of ref. 19; in this case 
~ =  1 [cf. (4.18)]. The explicit calculation of the integral around the 
singular point q = 0 yields now 

I 
V 1 if d = 2  

A(cA)= (vZ/31n V) 1 if d = 3  

[. V-  2/3 if d 1> 4 

Using these results and (4.12), one gets a solution 6 for (4.12) and fl = ~ :  

given by 

1 ~(o)  
0 < q(Fa(Q) 2) = lira V2a [~(c~)]  "~ A 

<Ct3 

i if d = 2  
3 = 5 d =  ~ + 0  if d = 3  

if d~>4 

The computation of 6' is now also immediate from the formula (4.13) for 
f l = O 0 :  

. 1 2c(0)m [A(cA)]I/2 < 
0 < , ( ra , (P)  2) = l ~  V2 ~, _ 5 _  

i.e., 6 ' =  - 6  d. 
Finally, the nontriviality of the commutation relation is immediate 

from (4.7). | 
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5. C O N C L U D I N G  R E M A R K S  

We found a structural phase transition at 2c(0), To=0, where the 
algebra of fluctuation operators is non-Abelian and the critical exponents 
c5, 6' r 0. This is a manifestation of the pure quantum nature of the phase 
transition. In contrast to the so-called temperature transitions [To(2)>0, 
Proposition4.3], we get here a rigorous analysis of a phase transition 
where one detects quantum features at criticality at the macroscopic level 
of its fluctuations. The very specific property is that the degree of 
abnormality in the fluctuations of the displacement is counterbalance 
by the same degree of supernormal criticality or the squeezing of the 
momentum fluctuation. 

It would be instructive even from an experimental point of view to 
proceed with the further study of this phenomenon in quantum many-body 
systems of solid state physics. The effect of squeezing is well known and 
intensively studied in quantum optics (see, e.g., ref. 20). Which are the 
devices to measure it in solid state physics and what are the possible 
applications? 

As far as our model is concerned, the phenomenon is present only at 
T = 0 .  This comes as an artifact of the model. In real physics this 
phenomenon should be observed in a "neighborhood" of T =  0. 

Another way of looking at the phenomenon is to consider it as an 
expression of an uncertainty principle for criticality in quantum systems. 

Finally, compared the degree of criticality in the case of temperature- 
driven transitions, i.e., 6d in Proposition 4.3, with the degree of the pure 
quantum transition, i.e., 6a in Proposition4.4. One remarks that the 
quantum fluctuations are less critical than the corresponding classical ones. 
Intuitively this is obviously a consequence of the quantum tunneling effects 
which become manifest at T =  0. 

Before finishing, we mention that we did not discuss here the problem 
of the dynamics of the fluctuations, which is classified in ref. 3 within the 
general theory of normal fluctuations. The interesting aspect of our results 
here is situated within the critical fluctuations. An extension of the existing 
theory to our situation should be elaborated first. We leave it to a future 
contribution. On that occasion we hope to be able to clarify the connection 
of the fluctuation spectrum with the soft-mode spectrum for the displace- 
ment structural phase transition. We hope to be able to clarify the so-called 
central peak problem which is believed to be connected with the intimate 
relation of the central mode with the critical fluctuations near a structural 
phase transition. 

An extension of our results to the case of more degrees of freedom per 
lattice site is also under current research. The symmetry breaking is more 
complicated and new types of fluctuations are in order. 
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A P P E N D I X .  C A L C U L A T I O N  OF THE FREE ENERGY DENSITY  

To calculate the thermodynamic limit of the free energy density 
fv[HA(h)] = (-/3V) -~ In Tr(-/3HA(h)), where Ecf. (1.1)and (3.1)] 

HA(h)=TA+V W -V, Q2 --h,cA ~ Q' (A.1) 

we suppose that the real function W: R1 ~ R~ satisfies the following 
conditions: 

( i )  W(x) >~ B ( o r  > - �89 

(ii) O<82W(x)<~e 
(A.2) 

k e m m a  A1. Let the self-adjo!nt operator T~,, in the Hilbert space 
o~ffA = | l~A L2(N1) be the generator of the Gibbs semigroup, i.e., for/3 > 0, 
exp(--~TA,a) ~ Yr-class(~A). Then exp(-~3HA(h)) ~ Yr-class(~A) for any 
h e n  1. 

ProoL Recall that the self-adjoint operator TA.a has the form [-see 
(1.1)] 

1 2 1 2 a 
TAa=E~m . P, +~ ~ (~u'(O,-Or) +-~Q~, a > 0  ( A . 3 )  

l e A  l , l '~A 

Then, by condition (i), for any h ~ N, the operator 

2tEA Q2+ VW -~, Q2 --h,~A ~ Q,>~B(h).~ (A.4) 

is semibounded from below by a B(h). Hence, the operator (A.1) is 
self-adjoint on the domain D(TA,a). On this domain we can represent the 
operator (A.1) as a well-defined algebraic sum 

HA(h)= TA,a-6+ U~(h), 8 > 0  (A.5) 

where a - g > 0 ,  the first term corresponds to the operator (A.3) with 
parameter substituted by a - 6 ,  and the second term corresponds to the 
operator (A.4) with parameter 6 >0. Then U6(h)>~B(h) is semibounded 
from below, but TA.a_ ~ is still a generator of the Gibbs semigroup. Hence, 
by the Golden-Thompson inequality 

Tr~e~(e ~n~(h)) ~<Tr)r~( e ~v.,~ ~e-~V~(h)) (A.6) 

one gets the statement of the lemma. | 
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Now we can construct an approximating Hamiltonian Ha(c, h) using 
the following operator expansion: 

HA(h)=Ti--h ~ Qz+V W(c)+ ~ ,  Q~-c W'(c) 

Hence, in the last term, we use the spectral decomposition for the self- 
adjoint operator (I/V) Zt~A Q~ and the second derivative of the function 
W(c) in the inermediate point c~. The part linear in the operator 
(I/V) Zl ,~  Q~ of the expansion (A.7) is called the approximating (or trial) 
Hamiltonian for the original one (A.1): 

HA(c,h)=TA--h E Q,+W'(c) E OZ+V{W(c)_cW,(c)} (A.S) 
l e a  l e a  

T h e o r e m  A1. Let the function W(x) describing the anharmonicity 
in the Hamiltonian (A.1) satisfy the conditions (A.2). Then the 
thermodynamic limit for the free energy density {fv[~A(h)] } v exists and 

limfv[Ha(h)] = lim supfv[HA(e, h)] - f ( T ,  h) (A.9) 
V V c 

Proof. By the Bogoliubov inequality one gets 

1 
<HA(h) - HA(C, h) >HA(h) <~fv[HA(h)] -- fv[HA( c, h)] 

1 
~<~ (HA(h) -  HA(e, h)>HA(c.h) (A.10) 

Here (-->HA(h) and (-->~A(c,h) are finite-volume Gibbs states defined by 
the full and approximating Hamiltonians, respectively. By the condition (ii) 
of (A.2) and by (A.7) and (A.8) we obtain 

1 
"~ V <HA(h) - Ha(c, h) >nAr 

-~<Ha(h)--Ha(c,h)>HA(c,h)<<.~e -~, Q~-c /  /ttA(c,h) 

Therefore, the inequality (A.10) gives the following estimate for the free 
energy density: 

1 
O<~fv[HA(h)] supfv[HA(c,h)]<~2e 2 - Qt - CA(T, h) 

c l r  A ~ H A ( c a , h )  

(A.11) 
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where c,(T,h) corresponds to the point where the supcfv[H(c,h)] 
is attained. Note that the approximating Hamiltonian (A.8) is a 
"renormalized" harmonic Hamiltonian with the frequencies 

(2k(c)= {A(c)+ [~(0) ~(k)]} ~/2, k~A* (a.12) 

where 

A(c) = a + 2 W'(c) (A.13) 

Then by explicit calculations one gets 

J fv[HA(c, h)] =BVk~A. In 2 sh~B2~k(c) - - - - -  

+ 1-W(c)- cW'(c)] 

1 h 2 

2 3(c) 

(A.14) 

and, correspondingly, the following equation for the point cA(T, h): 

cA(T, h)= -~, Q2 --A2(cA) 
HA (cA, h) 

2f2k(CA--------- ~ coth ~/?2~k(CA) (A. 15) 

where 2=h/x/--m. In (A.15) we used condition (ii) of (A.2). Calculation of 
the expectation in the rhs of (A.1I) is now the result of the Wick theorem 
for the harmonic Hamiltonian (A.8): 

< ( 1 ~ .  < I ~ A  > ) >  9 2 2 

Dv(T,h) - -~, QT-  -Vt Qt ~IA(cA,h) UA(cA,h) 

~ coth ~ fl2Ok(cz) +-~\A2(cA) j (A.16) 

Now we have to distinguish two cases: (a) a+2W'(c>~O)>O and (b) 
a + 2W'(c) is a monotonic increasing function of N~+ [see (ii) of (A.2)] with 
unique zero at c*> 0. 

(a) In this case the gap A(c)>O for all c~>0. Hence the limit in 
(A.15) exists and 

h 2 1 ~ 2 1 
c(T, h) - AZ(c(T ' h)) + (--2g) d J~a ddk 2f2k(C(T, h)) coth ~ fl2f2k(c(T, h)) 

(A.17) 
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where ~ a = X d = l  [---rt, z].  For the same reason, i.e., A(CA(T, h) )>0 ,  one 
gets, by (A.16), 

lim Dr(T, h) = 0 (A.18) 
v 

for any T>~ 0 and h ~ ~1. 

(b) In this case 3 (c*)=0 .  Hence, the solution of Eq. (A.15) (see 
Section 3 for details) exists and CA(T, h) > c*; moreover, for h r 0 one gets 
that lim v CA (T, h) = c( T, h) > c* for h ~ 0 and any T ~> 0. Therefore, again 
3(c(T, h) )>  0 and, as a consequence, we get (1.18) for h :~0. This means 
that we prove (A.9) in the form [cf. (A.14)] 

f(T, h :A 0) = lim fv[HA(h ~ 0)] 
v 

=1 1 [ 2 s h  ~/~2 k(c(T, ~ (~)~ f~dddk l n 1 s h))] 

1 h 2 
232(c(T, hl)+[W(c(T,h) l -c(T,  hlW'(c(T,h))] (1.19) 

where r h) is the solution of Eq. (A.17)for h ~ 0 .  
The free energy densities fv[HA(h)] are convex functions of the 

variable h ~ R 1 as well as the limit f (T,  h). Therefore, we define f(T, h = O) 
in (A.9) and (A.19) by continuity: 

f(T, h=O)= lira limfv[HA(h) ] | 
h ~ 0  V 

A C K N O W L E D G M E N T  

We thank J. Huyghebaert for his kind assistance in the design of the 
figures. 

REFERENCES 

1. A. Z. Patashinskii and V. I. Pokrovskii, Fluctuation Theory of Phase Transitions 
(Pergamon Press, Oxford, 1979); G. L. Sewell, Quantum Theory of Collective Phenomena 
(Clarendon Press, Oxford, 1986). 

2. K. Alex Miiller, W. Berlinger, and E. Tosatti, Z. Phys. B Condensed Matter 84:277 (1991). 
3. D. Goderis, A. Verbeure, and P. Vets, Commun. Math. Phys. 128:533 (1990). 
4. D. Goderis, A. Verbeure, and P. Vets, Prob. Theory Related Fields 82:527 (1989). 
5. D. Goderis, A. Verbeure, and P. Vets, J. Star. Phys. 62:759 (1991). 
6. R. S. Ellis and C. M. Newman, J. Stat. Phys. 19:149 (1978). 
7. M. Fannes, A. Kossakowski, and A. Verbeure, J. Stat. Phys. 65:801 (1991). 
8. S. Stamenkovi6, N. S. Tonchev, and V. A. Zagrebnov, Physica 145A:262 (1987). 
9. J. L. van Hemmen and V. A. Zagrebnov, J. Stat. Phys. 53:835 (1988). 



Algebra of Fluctuation Operators 359 

10. N. M. Plakida and N. S. Tonchev, Theor. Math. Phys. 63:504 (1985). 
11. A. Verbeure and V. A. Zagrebnov, Preprint-KUL-TF-91/42, Phys. Rev. Left., submitted. 
12. A. D. Bruce and K. A. Cowley, Structural Phase Transitions (Taylor & Francis, London, 

1981). 
!3. M. Fannes and A. Verbeure, Commun. Math. Phys. 55:125 (1977); 57:165 (1977). 
14. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics, 

Vol. I (Springer-Verlag, New York, 1979). 
15. K. Hepp and E. H. Lieb, Helv. Phys. Acta 46:573 (1974). 
16. A. Verbeure, Phonons limit and phonon dynamics, in Proceedings of  the 3rd Locarno 

International Conference "Stochastic Processes--Geometry and Physics" (June 1991 ). 
17..1. G. Brankov, N. S. Tonchev, and V. A. Zagrebnov, Theor. Math. Phys. 66:72 (1986). 
18. N. Angelescu and V. A. Zagrebnov, J. Stat. Phys. 41:323 (1985). 
19. M. E. Fisher and V. Privman, Commun. Math. Phys. 103:527 (1986). 
20. F. D. Walls, Noture 306:141 (1983). 
21. K. A. Mfiller, in Nonlinear Phenomena at Phase Transition and Instabilities, T. Riste, ed. 

(Plenum Press, New York, 1982). 


